An interactive tool for semi-automatic feature extraction of hyperspectral data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature extraction of hyperspectral images using boundary semi-labeled samples and hybrid criterion

Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new fea...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

Particle Swarms for Feature Extraction of Hyperspectral Data

This paper presents a novel feature extraction algorithm based on particle swarms for processing hyperspectral imagery data. Particle swarm optimization, originally developed for global optimization over continuous spaces, is extended to deal with the problem of feature extraction. A formulation utilizing two swarms of particles was developed to optimize simultaneously a desired performance cri...

متن کامل

Best-bases feature extraction algorithms for classification of hyperspectral data

Due to advances in sensor technology, it is now possible to acquire hyperspectral data simultaneously in hundreds of bands. Algorithms that both reduce the dimensionality of the data sets and handle highly correlated bands are required to exploit the information in these data sets effectively. We propose a set of best-bases feature extraction algorithms that are simple, fast, and highly effecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Geosciences

سال: 2016

ISSN: 2391-5447

DOI: 10.1515/geo-2016-0040